夏季,为了消减酷暑的炎热,下水消暑成了老老少少的选择,这也就给溺水事故埋下了隐患。以前,人工巡视虽然能够起到一定作用,但是仍不能避免时间差带来的弊端,每当发现后可能就为时已晚。而利用无人机,则可以开展不间断、高密度、大范围的巡视工作,其灵活机动的特点在巡湖巡河中十分高效。无人机搭载吊舱后升空,能够看得更远、更清晰,并且能够轻松飞到一些盲区进行巡视。如果只是搭载吊舱仍属于手动巡视的一种。如果要实现更加智能化的巡视,则可以在无人机光电吊舱的基础上定制植入具备智能识别检测的AI图像跟踪板,板卡在定制的对“人”的识别算法的赋能下,就能够对河道内、靠近河道的人进行自动识别跟踪,一旦发现有人靠近水域出现涉水等行为,无人机就可以主动靠近,并通过人工喊话、大喇叭等形式对相关人员进行劝导。特殊目标的识别精度如何提高?成都深度学习AI智能监控
无人机在高速公路巡检中的作用越来越突出,特别是在十一黄金周这样的出行高峰,高速公路的安全和畅通至关重要。传统的巡检模式受到人力物力以及时空的限制,弊端很大,难以实现精细大面积的监控疏导。无人机灵活机动的特点则能够很好的弥补时空的局限,而想要进一步减少人力物力的付出,则需要打造智能化的无人机,通过AI赋能,让无人机更加聪明。打造智能化无人机可以在无人机吊舱的基础上加装高性能的AI图像处理设备,成都慧视开发的Viztra-HE030图像处理板凭借6.0TOPS的算力,用在十一黄金周这样的出行高峰期就能够很好地胜任工作,板卡采用了国产化芯片RK3588,在算法的赋能下,能够实现高效巡检。成都人工智能AI智能图像处理板利用慧视SpeedDP能够帮助提高FPV跟踪精度。
成都慧视光电技术有限公司开发的Viztra-HE030图像处理板,利用国产化高性能芯片RK3588开发而成,它能够实现6.0TOPS的算力,能够轻松应对粮库内部复杂的环境,成都慧视可以根据客户使用的相机接口进行图像处理板的接口深度定制,实现快速的AI害虫识别。在算法方面,可以使用自己的算法,我司还可以根据需求定制提供算法性能训练提升工具SpeedDP,平台可以通过大量的粮库害虫AI识别模型训练,提升自身算法精度,进而提升摄像头害虫识别精度。
实现这些功能的技术中,图像处理基于AI图像处理板这一传感器。板卡具备快速图像处理识别的硬件能力,植入相应的AI算法,无人机就相当于装上了“智慧眼”,而且这个“智慧眼”居于高空,能够在一个定点,俯瞰大范围,实时监控货物的存放状态。远程控制技术基于网络通信,通过和图像处理板的结合,能够实现低延时低带宽的图像传输处理。在实际落地应用中,可以采用成都慧视开发的高性能图像处理板,其中RV1126系列的Viztra-LE026图像处理板,就是无人机的完美搭子。这款图像处理板具备2.0TOPS的算力,能够根据无人机型号进行接口定制,整体尺寸在40mm×40mm×10mm左右(核心板+接口板),小巧的外形即便是小型无人机也能够装上。此外,板卡整体功耗在4W左右,不会过多增加无人机的负担。无人机识别算法找成都慧视。
识别算法的性能提升依靠大量的图像标注,传统模式下,需要人工对同一识别目标的数据集进行一步一步手动拉框,但是这个过程的痛苦只有做过的人才知道。越多素材的数据集对于算法的提升越有帮助,常规情况下,一个20秒时长30帧的视频就多达两三百张画面需要标注,如果视频时长或者视频的帧速率增加,需要标注的帧画面将会更多。小编曾试过标注一个时长为1分30秒帧速率为60的视频,需要标注的画面竟然多达5000多张,当我标注到500张的时候,整个人都已经麻木,并且出现情绪波动,望着剩下的4500多张待标注画面,看着都头皮发麻,怎么都不想继续了。AI算法训练标注一体平台SpeedDP。成都人工智能AI智能图像处理板
图像标注是一项繁琐的工作。成都深度学习AI智能监控
利用图像处理技术实现导弹的远程打击是一项运用了比较长时间的技术,相比于现代化的电子控制,它具备低受干扰的特点,特别是无人机在军备领域的广泛应用,图像处理的作用重新受到重视。远程打击时,需要对整个弹的识别能力进行深度学习训练,不断的训练能够让AI更加聪明,让AI知道该打击什么,从而提升打击精度。在前期的试验印证阶段,需要进行大量反复的试验训练,通过在导弹前端植入导引头,给导弹装上眼睛,可以实时记录导弹打出后的视频画面,然后将大量的视频数据采集到一起用于分析改进。成都深度学习AI智能监控
成都慧视光电技术有限公司免责声明: 本页面所展现的信息及其他相关推荐信息,均来源于其对应的商铺,信息的真实性、准确性和合法性由该信息的来源商铺所属企业完全负责。本站对此不承担任何保证责任。如涉及作品内容、 版权和其他问题,请及时与本网联系,我们将核实后进行删除,本网站对此声明具有最终解释权。
友情提醒: 建议您在购买相关产品前务必确认资质及产品质量,过低的价格有可能是虚假信息,请谨慎对待,谨防上当受骗。